
Animations in MATLAB

Daniel Lab Hallway Salon
02-11-2011

https://courses.washington.edu/danielab/labwiki/index.php?title=Making_animations_in_MATLAB

Friday, February 11, 2011

https://courses.washington.edu/danielab/labwiki/index.php?title=Making_animations_in_MATLAB
https://courses.washington.edu/danielab/labwiki/index.php?title=Making_animations_in_MATLAB

From Mathworks docs:

You can create animated sequences with MATLAB graphics in three different
ways:

■ Save a number of different pictures and play them back as a movie.

■ Continually erase and redraw the objects on the screen, making
incremental changes with each redraw.

■ Redefine the XData, YData, ZData, and/or CData plot object properties,
optionally linking them to data sources (workspace variables) and updating
the properties via calls to refreshdata.

Easiest implementation:
FOR - loop creates updated figures
for each frame of the final movie

I’ll show you the recipe that works for me, but
there are many ways to achieve animated bliss

Friday, February 11, 2011

Example movie:

Friday, February 11, 2011

Friday, February 11, 2011

Digitized points (3D) of a hovering moth

Friday, February 11, 2011

Step-by-step example of how to create a multi-axes animation

Topic covered:

creating an animation from a parametric equation

saving the animation as an image sequence (TIFF stack)

planning and creating a multi-axes figure

load sequential images from TIFF stack

draw axes for images and data graphs

update information for each frame

set up the FOR loop

save figure content into AVI movie file

Friday, February 11, 2011

Step-by-step example of how to create a multi-axes animation

Topic covered:

creating an animation from a parametric equation

saving the animation as an image sequence (TIFF stack)

planning and creating a multi-axes figure

load sequential images from TIFF stack

draw axes for images and data graphs

update information for each frame

set up the FOR loop

save figure content into AVI movie file

Friday, February 11, 2011

Creating an animation from a parametric equation: setting up the path
a dot should move along

%% create data for our animation: a dot moving along a path
% Our aim is to make a circle move around an image along a specified path.
% First, we'll create that path (xpos and ypos)

revolution_no = 5; % how often around the circle
ang_resolution = 40; % how many points (i.e. frames) per circle
da = 2*pi/ang_resolution; % delta angle

t = 0:da:revolution_no*2*pi; % time steps

% why not a spiral:
pathradius = linspace(0,10,length(t)); % path radius increases each dt
xpos = pathradius.*cos(t);
ypos = pathradius.*sin(t);

% show what we have so far:
figure(1);
subplot(1,3,1:2)
plot(t,xpos, '-k'); hold on;
plot(t,ypos, '-r');
set(gca, 'XLim', [0 max(t)]); box off;
xlabel('time steps'); ylabel('x (black) and y (red) pos')

subplot(1,3,3)
plot(xpos,ypos,'k'); axis equal; axis off;
title('The path our circle will move along');

% We now want to use these x-y coordinates to place a cirle on an image.
% Each iteration, we want the position to be updated so that it appears as
% if the circle moved around the specified path.
% In addition, we want the circle diameter to change as it goes along.

circlesize = linspace(0.2,2, length(t)); % circle size increases linearly

Friday, February 11, 2011

%% Test the moving circle
% We'll now plot a circle for each time steps, according to the path and
% size specifications above. I created a separate function to create the
% circle, called 'plotfilledcircle'.

axlim = 15;
figure;
for c = 1:length(t)

 ph=plotfilledcircle(circlesize(c), [xpos(c) ypos(c)]);

 % we need to set the axes to an appropriate limit, otherwise they'll
 % resize to always show the full circle:
 axis([-axlim axlim -axlim axlim]);
 axis square;
 % create a counter that updates each iteration:
 titlestr = sprintf('Frame: %03d', c);
 title(titlestr);

 pause(0.05); % pause a bit to see animation
end

Plotting a circle that follows our path equation

helper

function

Friday, February 11, 2011

Function to draw a circle

function ph = plotfilledcircle(circle_radius,circlecenter, fcol)
%
% plotfilledcircle(circle_radius,circlecenter, fcol)
%
% Function to plot a filled circle with radius 'circle_radius'
% 'circlecenter' ... center location [0 0] is default
% 'fcol' is optional and defines the face color (black default)
%
% Armin H 2011

if nargin < 2
 circlecenter = [0 0];
end
if nargin < 3
 fcol = [0 0 0];
end

theta = linspace(0,2*pi,100); % 100 points between 0 and 2pi
x = circle_radius*cos(theta) + circlecenter(1);
y = circle_radius*sin(theta) + circlecenter(2);
ph = fill(x, y, 'k');

set(ph, 'FaceColor', fcol);
box off; axis equal;

end

helper

function

Friday, February 11, 2011

Step-by-step example of how to create a multi-axes animation

Topic covered:

creating an animation from a parametric equation

saving the animation as an image sequence (TIFF stack)

planning and creating a multi-axes figure

load sequential images from TIFF stack

draw axes for images and data graphs

update information for each frame

set up the FOR loop

save figure content into AVI movie file

Friday, February 11, 2011

Saving the animation as an image sequence (TIFF stack):
imwrite() function writes frames captured with frame2im() to a file

axlim = 15;
figure;
for c = 1:length(t)
 fprintf('Frame: %03d\n', c); % display counter

 ph=plotfilledcircle(circlesize(c), [xpos(c) ypos(c)]); % plot circle
 axis off;
 % we need to set the axes to an appropriate limit, otherwise they'll
 % resize to always show the full circle:
 axis([-axlim axlim -axlim axlim]);
 axis square;

 % We'll save this animation as a tiff stack, so we can load it
 % back later for our grand finale
 currentframe = frame2im(getframe(gcf)); % convert fig into image data
 currentframe = im2bw(currentframe,0.4); % make it binary to save space
 if c == 1
 imwrite(currentframe, 'tiffstack.tiff', 'WriteMode', 'overwrite');
 else
 imwrite(currentframe, 'tiffstack.tiff', 'WriteMode', 'append');
 end

 pause(0.05); % pause a bit to see animation
end

Friday, February 11, 2011

Step-by-step example of how to create a multi-axes animation

Topic covered:

creating an animation from a parametric equation

saving the animation as an image sequence (TIFF stack)

planning and creating a multi-axes figure

load sequential images from TIFF stack

draw axes for images and data graphs

update information for each frame

set up the FOR loop

save figure content into AVI movie file

Friday, February 11, 2011

Planning and creating a multi-axes figure

x

y

width

height

ax_pos = [x y width height];
ax_handle = axes;
set(ax_handle, 'Units', 'pixels', 'Position', ax_pos);

set(ax_handle, 'Units', 'normalized', 'Position', ax_pos);or relative sizing:

fill plot of circle
display frame

from TIFF
stack

evolving graph of circle size

evolving graph of circle position

Friday, February 11, 2011

Planning and creating a multi-axes figure: collect positions in matrices

I like to set up
position variables
before entering the
loop.

Axes in the loop will
use these variables
to position
themselves on the
figure

It’s also useful to
declare often-used
colors at the onset

fig_pos = [100 10 1024 768]; % position and size of the figure window

fillplot_ax_pos = [80 320 400 400]; % position and size of fill plot
image_ax_pos = [580 320 400 400]; % image plot
sizedata_ax_pos = [50 170 1024-60 70]; % circle size graph
posdata_ax_pos = [50 50 1024-60 100]; % circle position graph

fig_col = [1 1 1]; % figure background color
text_col = [0 0 0]; % text color
light_grey = [.4 .4 .4];
dark_grey = [.2 .2 .2];
nice_blue = [51/255 51/255 102/255];
light_red = [.6 .4 .4];

All this makes it easier to change the appearance of various elements

Friday, February 11, 2011

Step-by-step example of how to create a multi-axes animation

Topic covered:

creating an animation from a parametric equation

saving the animation as an image sequence (TIFF stack)

planning and creating a multi-axes figure

load sequential images from TIFF stack

create axes for images and data graphs

update information for each frame

set up the FOR loop

save figure content into AVI movie file

Friday, February 11, 2011

Set up the FOR loop: my recipe

Before the loop:

Set up figure
window, use
‘Position’
property to set
size

Declare where all
the elements
(axes) should be

flag that decides
whether movie
object is created

set to zero when
setting up the
layout etc.

if set to one:
avifile function
sets up movie
object.

movieflag = 1;
moviefilename = 'tutorialmovie.avi';

% only if our flag is set to 1, will we open up a movie object:
if movieflag == 1
 aviobj = avifile(moviefilename, 'fps', 30, 'compression', 'none');
end

startframe = 1; endframe = 100;

fh= figure('color', fig_col, 'name', 'Tutorial animation movie', ...
 'Position', fig_pos);

for k = startframe:endframe

 % MAKE THE FIGURE
 %
 %

 if movieflag == 1
 frame = getframe(gcf); % capture current figure
 aviobj = addframe(aviobj,frame); % append frame
 end
 if k < endframe
 clf; % clear figure except for very last frame
 end
end

if movieflag == 1
 aviobj = close(aviobj);
end

Friday, February 11, 2011

Set up the FOR loop: my recipe

In the loop:

Draw your axes in
the figure window
with data from
time step k

if movieflag equals
one, capture the
current figure with
getframe()

use addframe() to
append frame to
the movie object

clear the figure
with clf if you’re
not at the last
frame (seems to
make stuff faster)

movieflag = 1;
moviefilename = 'tutorialmovie.avi';

% only if our flag is set to 1, will we open up a movie object:
if movieflag == 1
 aviobj = avifile(moviefilename, 'fps', 30, 'compression', 'none');
end

startframe = 1; endframe = 100;

fh= figure('color', fig_col, 'name', 'Tutorial animation movie', ...
 'Position', fig_pos);

for k = startframe:endframe

 % MAKE THE FIGURE
 %
 %

 if movieflag == 1
 frame = getframe(gcf); % capture current figure
 aviobj = addframe(aviobj,frame); % append frame
 end
 if k < endframe
 clf; % clear figure except for very last frame
 end
end

if movieflag == 1
 aviobj = close(aviobj);
end

Friday, February 11, 2011

Set up the FOR loop: my recipe

Out of the loop:

Close the movie
object with
close(), if the flag
was set

movieflag = 1;
moviefilename = 'tutorialmovie.avi';

% only if our flag is set to 1, will we open up a movie object:
if movieflag == 1
 aviobj = avifile(moviefilename, 'fps', 30, 'compression', 'none');
end

startframe = 1; endframe = 100;

fh= figure('color', fig_col, 'name', 'Tutorial animation movie', ...
 'Position', fig_pos);

for k = startframe:endframe

 % MAKE THE FIGURE
 %
 %

 if movieflag == 1
 frame = getframe(gcf); % capture current figure
 aviobj = addframe(aviobj,frame); % append frame
 end
 if k < endframe
 clf; % clear figure except for very last frame
 end
end

if movieflag == 1
 aviobj = close(aviobj);
end

Friday, February 11, 2011

Step-by-step example of how to create a multi-axes animation

Topic covered:

creating an animation from a parametric equation

saving the animation as an image sequence (TIFF stack)

planning and creating a multi-axes figure

load sequential images from TIFF stack

draw axes for images and data graphs

update information for each frame

set up the FOR loop

save figure content into AVI movie file

Friday, February 11, 2011

Set up axes for images and data graphs

As mentioned, I like to set up position and color variable at the onset

handle_ax = axes;
 set(handle_ax, 'Units', 'pixels', 'Position', handle_ax_pos);

 p1h(1)=plot(xpos,ypos, '-.');
 set(p1h(1), 'Color', light_grey, 'LineWidth', 2);
 hold on;
 p1h(2) = plot(.....
 set(p1h(2), 'Color', light_red, 'LineWidth', 1);
 hold off;

axes() command uses position information to place axes accordingly

graphics handles allow fine-grained control over each element

Friday, February 11, 2011

Step-by-step example of how to create a multi-axes animation

Topic covered:

creating an animation from a parametric equation

saving the animation as an image sequence (TIFF stack)

planning and creating a multi-axes figure

load sequential images from TIFF stack

set up axes for images and data graphs

update information for each frame

set up the FOR loop

save figure content into AVI movie file

Friday, February 11, 2011

Load sequential images from image file (TIFF stack example)

imread(ind) loads images from a file. Certain files (GIF, TIFF) can contain
multiple images in a stack. The ind tells the function which image it should
pull from the stack.

imagesc(img) displays the image. colormap tells it what the numbers
contained in the img array “mean”.

 image_ax = axes;
 set(image_ax, 'Units', 'pixels', 'Position', image_ax_pos);
 try
 img = imread('tiffstack.tiff', k); % load image of current index
 catch ME1
 % Get last segment of the error message identifier.
 idSegLast = regexp(ME1.identifier, '(?<=:)\w+$', 'match');
 disp(idSegLast);
 error('Failed loading tiff image');
 end
 img = xor(1,img); % invert image to make it more exciting... XOR rules!
 imagesc(img); colormap gray; axis off; axis image;

 th=title('Inverted image from TIFF stack');
 set(th, 'FontSize', 14);

Friday, February 11, 2011

Step-by-step example of how to create a multi-axes animation

Topic covered:

creating an animation from a parametric equation

saving the animation as an image sequence (TIFF stack)

planning and creating a multi-axes figure

load sequential images from TIFF stack

set up axes for images and data graphs

update information for each frame

set up the FOR loop

save figure content into AVI movie file

long and tedious code, see code listing

Friday, February 11, 2011

Step-by-step example of how to create a multi-axes animation

Topic covered:

creating an animation from a parametric equation

saving the animation as an image sequence (TIFF stack)

planning and creating a multi-axes figure

load sequential images from TIFF stack

set up axes for images and data graphs

update information for each frame

set up the FOR loop

save figure content into AVI movie file

Friday, February 11, 2011

Save figure content into AVI movie file

f = getframe(gcf) captures the current figure window in variable f
addframe(aviobj,f) adds frame f to the open movie object (aviobj)

.

.

.
if movieflag == 1
 frame = getframe(gcf); % capture current figure
 aviobj = addframe(aviobj,frame); % use addframe to append frame
 end
 if k < endframe
 clf; % clear figure except for very last frame
 end

end % of the big loop
fprintf('\nDone looping...\n');

if movieflag == 1
 fprintf('Saving movie...\n\n');
 aviobj = close(aviobj);
end

call close(aviobj) to close the movie object once we are
done with the big loop

end of the
big movie loop

Friday, February 11, 2011

Compress movie with VirtualDub, Quicktime, or other movie editing software

Matlab can save already compressed files, but it seems faster
and easier to just save uncompressed videos, and do the
compression elsewhere

Compression rates are usually huge. E.g. for the tutorial
video:

Uncompressed: ca. 474 MB
XViD compressed: ca. 492 KB

Friday, February 11, 2011

Friday, February 11, 2011

